- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Egnaczyk, Thaddeus M (2)
-
Wagner, Norman J (2)
-
Hartt_V, William H (1)
-
Mills, Jennifer N (1)
-
Quinn, Caitlin M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Geopolymers, a class of alkali‐activated binders, are studied as sustainable alternatives to Ordinary Portland Cement due to their potential for CO2emission reduction. However, the critical relationship between early‐age reaction kinetics, the development of material properties, and evolving chemical structure remains insufficiently explored, primarily because of the complexity of the underlying chemical reactions and the wide variety of geopolymer chemistries. To address this, we investigate the mechanism of early‐age (<72 h) strength development of a model metakaolin geopolymer by measuring curing kinetics using isothermal calorimetry, material property development via rheology, and chemical coordination at distinct extents of reaction via29Si and27Al NMR. A novel approach of collecting solid‐state29Si and27Al NMR spectra at low temperature (−17°C) successfully quenches the geopolymer reaction, allowing for spectrum collection at a desired extent of reaction despite long29Si NMR spectrum collection times. Applying the Avrami kinetic model to deconvoluted calorimetry data enables independent analysis of dissolution and polycondensation/crosslinking reactions. From these data, the gel reaction product mass fraction is estimated, revealing an exponential relationship with the storage modulus in the activated metakaolin slurry. This study provides new insights into the interconnected dynamics of molecular chemistry, reaction kinetics, rheology, and strength development, offering a semi‐empirical framework for understanding property evolution in geopolymers more broadly.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Egnaczyk, Thaddeus M; Hartt_V, William H; Mills, Jennifer N; Wagner, Norman J (, Advances in Space Research)
An official website of the United States government
